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ABSTRACT

A minimal isovist set (MIS) of a simple polygonal region P is a smailest set of
points in P whose union of isovists equals P (where the isovist of x is the set of all points
visible from x). This thesis presents an algorithm to search for an MIS for an arbitrary
P. An MIS is shown to be equivalent to a minimal covering of P with star-shaped po-
lygons. A (non-complete) algorithm to find a minimal covering is proposed which uses
the vertices of the kernels of the star-shaped polygons. The complexity of finding an
MIS is reduced to a worst-case consideration of no more than n4 points in P. A com-
parison of the proposed algorithm with two previously published algorithms is made.
Extension of this method to exterior views and interior holes is discussed, and areas for
future research are mentioned.
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1. Introduction.

This thesis addresses a general problem in computational geometry first posed by

Chvatal [CHVA 75]. Suppose one is given the task of designing a computer system to

guard a museum. The goal is to place video cameras at strategic points in the museum

such that the entire area of the museum is within view at all times. It is very desirable

to minimize expense and computer image processing requirements by placing only the

minimal number of cameras in the museum. How many cameras are required, and what

are the strategic points at which they must be placed?

A second example of this general problem falls under the category of Materials

Inspection. Suppose XYZ Corporation wishes to automate the quality assurance inspec-

tion of some product. As the finished product rolls off the assembly line, video cameras

view the product's surface, and the computer analyzes the scenes for scratches, defects,

etc. It is clearly desirable to determine the minimal number of cameras necessary to do

the job.

In the context of robot navigation, one can imagine giving a robot a model of the

environment through which it must navigate, and requesting that it uses its sensing

capabilities as little as possible in performing some reconnaissance mission in that

environment.

The goal of this thesis is to find a solution to this class of problems which can then

be translated into a computationally feasible computer algorithm. Accession For
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2. Statement of the Problem.

The mathematical model used in this paper was developed by Davis and Benedikt

[DAVI 79]. Davis and Benedikt formulated a geometric model for visibility in the two

dimensional case called the "isovist", and posed this paper's problem in terms of that

model.

Let us consider a simply-connected closed subset P of a plane, and also consider

two points, z and y, within the subset P.

Definition 2.1. z is visible from y iff F7 P, that is, the line segment Hy is entirely

contained within P. See Figure 2-1.

Definition 2.2. The "isovist of z", called V,,, or V, if P is understood, is defined to

be

Vs'4iP ye e Fj.

In other words, the isovist of some point z in P is the set of all points visible from

z. See Figure 2-2.

Definition 2.3. A "sufficient isovist set", or more simply a "SIS", is a set of points

5m X1,Z2 } in P such that

U V.P -JP.

That is, a set of points is sufficient iff all the points in P are visible from some point

within the set S. See Figure 2-3.
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Figure 2-2.
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Figure 2-3.

An Example of a Sufficient Isovist Set {a,b,c}.
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Definition 2.4. A "minimal isovist set", or "MIS", is a set of points M

,} . 1in P such that M is sufficient and IMI < jYf, for all other sufficient

sets Y in P. See Figure 2-4.

An MIS conforms precisely with the intuitive description of the paper's problem: an

MIS is the smallest number of points in a region from which the entire region is visible.

What are the known facts concerning minimal isovist sets? It is known that for a

finite polygonal area, at least one MIS does exist [DAVI 79]. It is not obvious how big

the set will be (for an arbitrary figure), nor is it obvious which points will be members of

a particular MIS. Fortunately, some partial answers to these questions have been found.

V. Chvatal [CHVA 75], in his work on the "Watchman Problem", found that for arbi-

trary n-gons* there exists an upper bound on the MIS's cardinality, namely, L .**

It should be clear that, unlike Chvatal's upper bound, there is no non-trivial fixed

lower bound for MISs. Given any n greater than 5, one can construct two n-gons (see

Figure 2-5): the first n-gon is convex and thus any one point constitutes an MIS; the

second has at least six of its sides structured as in Figure 2-5 so as to require a cardinal-

ity greater than 1 for its MIS.

Davis and Benedikt were unable to find an algorithm which produced a MIS for an

arbitrary closed connected subset of the plane. They did, however, provide a method by

which a non-trivial lower bound on the cardinality of M for polygonal regions could be

obtained.

*For precise definition of this and other terms please consult the glossary in Appendix C.

-Historical Note: Chvatai characterised the problem in terms of graph theory. Davis and Benedikt published
their geometric model some years later.
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Figure 2-4.

An Example of a Minimal 15avist Set (d~e}.
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Figure 2-5.

Two 6-gons with different degrees of complexity.
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3. Theorems.

Before presenting various theorems which will allow us to search for an MIS, a brief

review of some of the definitions and results from computational geometry is in order.

This paper will limit itself to computing an MIS for a closed subset of the Cartesian

plane bounded by a sequence of n line segments which intersect at only n vertices, where

n > 3. For simplicity, we shall refer to such a region as a polygon.

The ke.-nel of a polygon (denoted K(P)) is the locus of points z such that the line

segment r is a subset of P for all points p in P [SHAM 77] (see Figure 3-1). It is a

theorem that K(P) is the intersection of the interior half-planes of the edges of P [YAGL

61]. Also, K(P) can be computed in O(n) [LEE 791.

A star-shaped polygon (or star polygon) is a polygon whose kernel is non-empty;

alternatively, it is a polygon such that there exists some point z in P that for all y in P,

the line segment iy is a subset of P.

It is obvious that Vip, the isovist of z, is a star-shaped region, and that when P is a

polygon, V,,p is a star-shaped polygon. It is also clear that any star-shaped polygon can

be considered as the isovist of some point z, where z is a member of K(P). This similar-

ity brings us to our first attempt at finding an MIS.

NON-Theorem. An MIS for a polygon determines a paritioning of P into a

minimal number of star-shaped polygons, and a minimal star-shaped partition

yields an MIS.

9
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Figure 3-1.

The Kernel of a Polygon.
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Figure 3-10.

A proof for Theorem 3.3.
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Figure 3-9.

Kernels of polygons which illustrate set C of Theorem 3.2.
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q.e.d.

Examples of star polygons whose kernels consist of points from each of the three

possible subsets in candidate set C are shown in Figure 3-9.

If it is the case that at least one MSC of an arbitrary (not necessarily star-shaped)

polygon P has regions whose kernels all contain points in C, then one can use the set C

in constructing an MIS for P. However, this is not always true.

Theorem 8.8. There exists a polygon such that, for all possible MSCs, at least one

kernel in any MSC does not contain a point found in set C.

Proof. (By construction) Consider Figure 3-10. There is only one choice for the ker-

nel of the "middle" star-shaped polygon, and that is the point a. Point a is clearly not

an element of set C. q.e.d.

It is interesting to note that point a of Figure 3-10* is located at the intersection of

two diagonals of P (extended into P). This observation leads to the next theorem.

Theorem 3.4. The kernel of a star-shaped polygon P always includes some point z

belonging to the candidate set of points S = I y I y is the intersection of two diago-

nals of P,t,7 and Vt,-- which are both wholly contained within P }.

Proof. It is obvious that the set C of Theorem 3.2 is a subset of the set S. q.e.d.

*My thanks to David Harwood for suggesting this example.
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The following theorem is now shown to be true.

Theorem 3.2. The kernel of a star-shaped polygon P always includes some point z

belonging to the "candidate" set of points C = (y I y = a vertex or y the inter-

section of an edge of P with the interior extension of an edge of P or y = the inter-

section of two (interior) extensions of edges of P).

Proof: By [YAGL 61J, one constructively forms the kernel by intersecting the half-

planes formed by the edges of P. Consider the vertices of the kernel of P.

Case 1. The kernel is a single point. Since the boundary of this kernel is the ker-

nel itself, it is clear by Lemma 3.2 that the point is a member of the set C.

Case 2. The kernel is a line segment. Consider the two vertices of the kernel.

Clearly, each vertex is by Lemma 3.2 a member of an edge or an edge extension. Now

consider the edge of P which is not collinear with the kernel of P and whose half-plane

boundary is closest to the vertex. Consider the shortest line segment from the vertex to

the half-plane boundary, call it X. Since this boundary is closest to the vertex, there is

no other half-plane boundary of P which intersects line segment X. Since the vertex is

in the kernel, segment X must also be in the kernel. But the vertex is the terminating

point of the kernel. Therefore, the line segment X must actually be a single point; that

is, the distance from the vertex to the closest non-collinear half-plane of an edge of P is

zero; that is, the vertex lies along the boundary of some half-plane of P other than the

edge (or edge extension) indicated by the kernel itself. Clearly, the vertex is the intersec-

tion of one edge, or edge extension, with some other edge, or edge extension; thus, the

vertex is a member of set C.

Case 3. The kernel is a convex k-gon. Consider the k vertices of the kernel. Each

vertex is shown to be a member of the set C by the same reasoning as found in Case 2.

21
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Figure 3-8.

Intersecting at an edge extension.
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Figure 3-8.

Intersecting at a vertex (Cas e ,3).
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Figure 34

I Illustration of Case 2.
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Figure 3-3.

Illustration of Case I (Lemma 3.2).
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Case 1. The extended edge eN+1 does not intersect K(N) (see Figure 3-3). Since

the interior half-plane of eN+1 must intersect K(N) (by definition of star-shaped, and by

[YAGL 61]), the entire K(N) lies totally within the N+1 interior half-plane; thus,

K(N+I) = K(N) and the boundary qualifies.

Case 2. The extended edge eN+1 intersects K(N) only along part of K(N)'s boun-

dary (see Figure 3-4). Again, K(N+1) = K(N) and the boundary qualifies.

Case 3. The extended edge eN+1 intersects K(N) at non-boundary points of K(N).

(See Figure 3-5).Since K(N) is convex (see [SHAM 75], [LEE 79]), eN+1 will (also) inter-

sect two boundary points of K(N). Clearly, those edges of K(N) which are not cut by

eN+1 and which lie within the eN+ interior half-plane are boundary edges of K(N+I)

* and consist of qualifying points, by the induction hypopaper. Consider now one of the

points along the perimeter of K(N) which intersect eN+l. If the point is a vertex (Fig-

ure 3-6), then eN+1 (as extended) becomes K(N+1)'s new edge adjacent to that vertex;

both of the edges adjacent to the vertex consist of qualifying points. If the intersection

point is not a vertex, then it must be on an edge or at an edge intersection. If it is on

an edge (Figure 3-7), one may consider the new edge of K(N+I) as a truncated version of

K(N)'s edge; by considering Lemma 3.1 it is clear that the new edge of K(N+I) still con-

sists of qualifying points (since it lies along an edge or an extension of an edge of P).

Finally, the K(N+I) edge may have its new vertex formed by the intersection of eN+1

(or its extension) with an interior extension of some edge of P (Figure 3-8). Both edges

bounding K(N+1) at this vertex have qualifying points. q.e.d.

14
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Since m-k is less than m, the original assumption is contradicted; therefore, the covering

is also minimal. q.e.d.

The approach of this paper is to determine a well-defined subset of points in any

polygon from which an MIS can always be found. When considering the simple case of a

star-shaped polygon, it is obvious that any point in the kernel serves as an MIS, and

that the polygon itself is an MSC. Can one describe a finite set of points which will

always have at least one member in the kernel of any star-shaped polygon? If so, a con-

sideration of this set (for any star-shaped polygon) will always yield an MIS. In order to

prove this, a few lemmas must first be considered.

Lemma 3.1. A point interior to a polygon can view all points on an edge of P if

and only if it can view the determining vertices of the edge [FREE 67].

Lemma 3.2. The boundary of the kernel of a star-shaped polygon P is composed of

points which lie along the edges of P or the extensions of edges through the interior

of P.

Proof: The proof is by induction on the half-plane intersections of P.

Base: The intersection within P of the interior half-planes of any two edges, say el

and e2, is bounded by points belonging to el or e2, or by the extensions of el or e2 inte-

rior to P.

Inductive Step: Given a region within P formed by the intersection of n half-planes

of edges of P, such that its boundary is composed of points which lie along the edges of

P or their extensions interior to P: the intersection of the interior half-plane of some

arbitrary edge eN+1 with this region results ;a a new region whose boundary satisfies

the stated conditions. Let the original region be named K(N), and the new region

K(N+I).

13
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Figuire 3-2.

A polygon whose minimal covering is a smaller set of pieces

than its minimal decomposition.
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Counter-ezample: Consider Figure 3-2. Two points, a and b, are clearly an MIS;

and yet it is impossible to partition P into less than three star-shaped regions.

One might instead define a "virtual decomposition", or "covering", which allows for

overlap, or intersection, of the various pieces of the decomposition; this would be analo-

gous to laying pieces of tiles on top of each other, and then viewing the resulting shape

as the region formed by the (non-occluded) outlines of the tiles.

Theorem 3.1. A covering of a polygon with a minimal number of star-shaped

polygons yields an MIS, and an MIS determines a minimal star-shaped covering

(hereafter called "MSC").

Proof: By choosing one point from each kernel of an MSC of the polygon, one

determines an SIS. This SIS is also minimal (i.e. it is an MIS); if it were not, there

would be some element of SIS, say u, whose isovist V. would be a subset of the union of

the other elements' isovists. One could then cover the unnecessary element's isovist into

pieces which are each totally visible from one particular element of the set SIS' = SIS -

(u). (For those points in V,, visible from more than one element of SIS', the points are

assigned to all those elements which see the points.) This process constructs a new cover-

ing of the polygon consisting of the isovists of the points in SIS'. Since the cardinality of

SIS' is one less than the number of pieces in our original covering, the new covering is

minimal. This contradicts the original assumption. Therefore, the SIS is an MIS. Going

the other way, given an MIS with m elements, we can construct m star-shaped regions

(i.e. the isovists of the elements of the MIS) whose union is P. These regions form an

MSC of P; if there was some other covering with fewer regions, say m-k regions, we

could construct (as done in the preceding paragraph) an MIS with m-k elements.

'-' 11



O'Rourke [OROU 82a] has constructed a polygon which shows that S cannot be

used as a basis for constructing an MIS. O'Rourke also conjectures [OROU 82b] that no

bounded finite set of points can be used as a basis for MIS construction for arbitrary

polygons (i.e., one can always produce some special polygon with some MSC, a kernel of

which contains no points from the chosen finite set).

.p2
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4fB. The Algorithm..

In order to use the preceding chapter's theorems, a small modification to the

definition of "isovist" is needed.

Definition 4.1. A "restricted isovist" V,. where S 8{,,• ,e} for o, e P, I < i

< r, is the subset of points (elements) of S visible from z. (Note that this differs

from Definition 2.2 in that the isovist of z is taken with respect to a finite set of

points in the plane, rather than with respect to a connected subset of the plane.)

The reduction of the search space from the entire polygon P to a finite set of points

S is desirable (although the particular set under consideration does not guarantee

minimal results in all cases). It is also desirable to reduce the extent of search computa-

tion from a consideration of regions to a consideration of points. The above definitions

indicate one possible reduction which guarantees a sufficient (and sometimes minimal)

result.

The following algorithm uses the candidate set S of Theorem 3.4 in determining an

MIS (or SIS) for an arbitrary polygon P.

Algorithm MINIVIST.

Input: A set of vertices {v,,v2, N ,v) which represent P.

Output: A set M which constitutes an MIS (or SIS) for P.

Step 0. [INITIALIZATION] Initialize S (candidate points described in

Theorem 3.4). Initialize M := (the null set).

Step 1. [CONSTRUCT ISOVISTS] Construct the visibility matrix V, with row

headings the restricted isovists V,,,s and column headings elements of S.

b20
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Fill in each element of the m trix V such that V V,,,s, - I if e i,' ,,s, 0 otherwise.

Step 2. [REMOVE UNNECESSARY POINTS] Construct a new matrix L, the lat-

tice of the visibility matrix V, by comparing rows of V. If V,,sC Vss for i-4j, then

remove V,s from L. (For V,,,s = V,,s, arbitrarily keep one and remove the other.)

Step 3. [DETERMINE NECESSARY POINTS] Compute the column sums for L.

For all columns whose sum equals 1, find the row entry in L which equals 1, say V,,s,

and include 8, in the set M. Remove row V,,,s from L. Remove all columns 8, from L

which have Vt V.s,i - 1.

Step 4. [COMBINATORIAL STEP] If L is empty, halt. If L has only one column,

arbitrarily include one s, from the remaining V,,.s of L in M and halt. If the number of

columns remaining in L is less than some threshold t, invoke a combinatorial algorithm

to see what subset of remaining elements of S minimally cover the remaining columns of

L. (If accuracy is desired, set t very high; if efficiency is critical, t can be low.)

Step 5. [COMPLETENESS] Determine if M covers the region P by considering

triads of mutually inter-visible vertices of P. For every triad not a subset of any isovist

of points in M, include one vertex from the triad in M.

Step 6. [TERMINATION] Halt.

In order to determine the merits of this algorithm, some lemmas must first be con-

sidered.

Lemma 4.1. For a star-shaped polygon, the points in set S not in K(P) do not see

all points in set S.

Proof: Assume there exists some candidate point c in S such that c is not in K(P)

and for all points z in S, z is visible from c. A point which views all vertices of P is a

27



member of K(P) [SHAM 77, pg. 118]. Since all vertices of P are in S, if c sees all points

in S, it necessarily sees all vertices of P. This means that c is a member of K(P), thus

contradicting our original assumption. q.e.d.

Lemma 4.2. A set of star-shaped polygons M = {8i, 82, 8,) (where s,eP) covers P

if for each triad of mutually inter-visible vertices of P there exists at least one s, in

M which contains the triad.

Proof: A triangulation of P exists [GARE 78]. Thus, every point in P is contained

within some triad of mutually inter-visible vertices (by definition of triangulation). If

the three vertices of a triangle are contained within (covered by) a region then all points

interior to the triangle are also covered [FREE 87]. Since we posit the covering of all

possible triads from some element of M, the particular triangulation developed in [GARE

78] is also covered; therefore, every point in P is covered. q.e.d.

The next two theorems will show the merits of MINIVIST from two perspectives:

accuracy and efficiency. The first theorem analyzes the accuracy of MINIVIST.

Theorem 4.1. [Accuracy of MINIVIST]. The algorithm MINIVIST always produces

an SIS, and sometimes produces an MIS.

Proof: The proof is a step-by-step analysis of the algorithm.

Step 0. MINIVIST initializes S to be the candidate set of points from Theorem 3.4.

It is known that some subset M of S is an MIS for many polygons, and that at least one

subset of S (i.e. the vertices of P) is an SIS.

Step 1. If one were to directly compute an MIS, one would need to calculate V,,

the isovists with respect to the polygon. However, MINIVIST attempts to calculate a

- minimal star-shaped cover instead. Lemma 4.1 shows that consideration of the isovists

with respect to S enables one to locate the kernels of a star-shaped cover, which is

28



sometimes an MSC.

Step 2. This step eliminates points in S which are not kernel points of an NISC (or,

in the special case, are vertices of a kernel whose representative point has already been

chosen).

Step 3. If there exists a point uniquely visible from one candidate point, the candi-

date point must be included in the MIS being constructed.

Step 4. Combinatorial processing is invoked if there is no obvious choice of

minimal isovist points.

Step 5. The preceding steps have found a covering for the finite set of points S.

Step 5 ensures that the entire region of the polygon P is properly covered by the isovists

of the points in M, as proven in Lemma 4.2. It is noted that Lemma 4.2 states a condi-

tion which is far stronger than that which is necessary to ensure a proper covering; that

is, there exists a proper cover of some P wherein a particular triad of vertices is sub-

sumed by none of the covering star-shaped polygons.

Step 6. Termination is guaranteed since the number of points considered is finite.

q.e.d.

The next analysis considers the algorithm in terms of computational complexity. It

considers only the worst-case polygon using the most optimal computing algorithms.

Analysis .4. Complexity of MINIVIST.

Step 0. Calculating the set S involves the determination of all diagonals of P and

their intersections (within the polygon). A straightforward calculation of these intersec-

tions would be O(n 4).

29
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Step 1. The isovist matrix information was gathered in Step 0. If we assume that

the compiler pre-processes the matrices to be filled with zeroes (in 0(n') preprocessing

time), then the matrix V can be set during the computation of isovists in Step 0.

Step 2. Constructing a lattice matrix requires 0(k) time for a k-by-k matrix; there-

fore, this step requires 0(n') processing.

Step 3. Matrix sums c,-n be calculated in O(k2); this step therefore requires 0(n4)

processing.

Step 4. This step results in either immediate termination (if a polynomial-time solu-

tion is found), or in a combinatorial search which will be exponential in worst case.*

Step 5. Although the isovist information has already been calculated, a worst case

estimate assumes that the number of possible triads is C(n,3) or 0(nS). Assuming O(n)

elements of M, one arrives at 0(n') processing time in the extreme case.

Step 8. The total computation time of MINIVIST is 0(n') whenever a polynomial-

time solution is available. If combinatorial processing is necessary, the algorithm is

exponential.

At this point some comments are appropriate. First of all, MINIVIST uses matrix

computations, which can be done very quickly on various special-purpose processors.

Secondly, the algorithm as presented can easily be modified to return, in lieu of or

in addition to an MIS, the corresponding MSC. Thirdly, the kernels of the computed

MSC are easily obtained during the computation"*. Since any point from each of the

kernels is an appropriate element for an MIS, the algorithm can be modified to return

the kernels of the MSC (with the kernel represented as the vertices of its convex

*It has been reported to the author that D.T. Lee has shows the paper problem to be NP-complete

**This is dome by considering those points not in the chosen MIS which have equivalent restricted isovists to some
point in the MIS
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polygonal border). This would afford a robot planner additional flexibility in chosing the

points most desirable for viewing an entire region. This flexibility may be important for

a solution to Davis and Benedikt's minimal path problem [DAVI 79].

Finally, the algorithm's efficiency may be improved by stipulating only necessary

(and sufficient) conditions in Step 5 to ensure a proper covering of P.
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5. Two-Dimensional Extensions.

§5.1. Polygons with Holes

We now consider the problem of finding an MIS for a broader subset of Cartesian

plane regions. Recall the definition of a polygon (Section 3); there were no provisions for

discontinuities within the region. The notion of a polygon is now expanded to allow the

existence of "holes".

Definition 5.1. A "non-simple polygon" is a (closed) subset of the Cartesian plane

bound,!d by one or more sequences of n line segments which intersect (respectively)

at only n vertices, where n > 3.

Definition 5.2. A "hole", with respect to some simple polygon, is an open simple

polygon whose boundary coincides with a subset of the boundary of the non-simple

polygon.

The stipulation that holes are open regions fits in nicely with the standard digital

image processing techniques of considering the exterior boundary of a binary image to be

computationally identical with holes inside the image.

Observation 5.1. The degree of complexity of a simple polygon with one or more

holes is always m > I (that is, there are no star-shaped simple polygons with

holes).

Rationale: Introduce one triangular hole into a .imple polygon P. (See Figure 5-1.)
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Figure 5-1.

A polygon with a triangular hole.
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Regardless of which point z is chosen in P, its view Vp of the rest of P is always

obstructed by the hole; that is, there is always one side of the triangle whose view is

occluded from z by the other two sides of the triangle. Clearly, adding more holes or

enlarging the size or number of sides of the hole will not eliminate the occlusion. q.e.d.

Observation 5.1 states that the MSC of a polygon with holes will always require at

least two "tiles"; alternately, there will always be at least two points within an MIS for a

polygon with holes. This fact indicates that the degree of complexity has been raised by

expanding the subset of regions being considered. In essence, by introducing a hole into

a polygon, one increases the number of edges to be considered, and thus the candidate

set S of Theorem 3.4 expands accordingly. However, the computation of an MIS and its

processing order of magnitude remain the same as before, assuming one increments n to

include the sides of the hole.

By expanding the definition of a polygon, the paper can now be said to have

accommodated the " Watchman" real-life example in a two-dimensional setting: the sim-

ple polygon corresponds to the floor plan of the art gallery, and the holes correspond to

statues and other works of art which remove small amounts of floor space from con-

sideration.

§5.2. Exterior Views

The second real-life example is different from the first in that inspection of an

object involves selecting a viewpoint exterior to the o~bj6 t, as opposed to within the

interior of the object. In order to accommodate this distinction (again, in a two-

dimensional setting), the notion of a "horizon " is introduced.

Definition 5.3. The "horizon H of radius r" for a polygon P is a sequence of four

line segments meeting at four vertices
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{hl=( c,+r,cj , h=( ccy+l ,h%=( c-r,cj ,h=( CC- , where (c ,cj is the centroid of

P, and r is a scalar unit of distance such that RintersectP=P, where R is a circular

region of radius r centered at ( c,,cJ.

This definition is based largely upon Davis and Benedikt's treatment of horizons

[DAVI 79, pp. 54-55]. Note that the horizon can be considered as the defining boundary

for a simple polygon. By treating it as such, and by letting P be considered as a "hole"

of H, one can directly apply the previous discussion concerning polygons with holes to

the problem of exterior views. In other words, finding MIS's for "exterior views" and

"polygons with holes" are identical problems, from the perspective of the isovist model.

Computationally, there is a slight difference between the two problems. In the first

real-life example (that of the art gallery), all data needed to apply MINIVIST are given a

priori; in the second example, an appropriate r must be chosen (somehow) and H com-

puted before applying MINIVIST.

This computational difference gives rise to an interesting question: does the

number of points in an MIS for an exterior view depend upon the size of r (and thus

indirectly upon the method used to select r)?
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8. Experimental Results.

In order to determine the relative merits of the algorithm proposed by this paper,

one must first establish appropriate criteria for comparing algorithms. We will use two

measures of "goodness", accuracy (i.e. does the algorithm compute a minimal set?) and

efficiency (i.e. how fast is it?).

The first measure is determined by comparing the subsets of possible polygons for

which any two algorithms successfully find an MIS. If one algorithm can find an MIS for

a larger subset of polygons than does the other, the first is considered a "better" algo-

rithm. If each finds solutions to polygons for which the other finds no solution, then the

two algorithms will be considered "incomparable".

The second measure is determined by an analysis of the order of magnitude of pro-

cessing, given a polygon with N vertices. An algorithm with a smaller order of magni-

tude of processing than a second algorithm is considered to be "better"; two algorithms

with equivalent orders of magnitude are considered "incomparable".

The first comparison is with an algorithm by Avis and Toussaint [AVIS 80],

in order to decompose a polygon by triangulation. It is first noted that the problem of

finding a minimal star-shaped decomposition is slightly different from that of finding an

MIS (see Figure 3-2). Chvatal's original formulation of the problem [CHVA 75] does not

assume that a strict partitioning of the "art gallery" is necessary, although that is the

approach he chose when solving for the upper bound

It is clear that MINIVIST is more accurate than Algorithm A. MINIVIST considers

a larger subset of diagonals of the vertices of the polygon (viz., all of them) and will thus

find an MIS whenever Algorithm A does. However, Algorithm A will never find an MIS
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for the polygon in Figure 3-2, since Algorithm A partitions rather than covers the region.

It is also clear that Algorithm A is much faster than MINIVIST (even when one

excludes pathological exponential cases), based on the analysis of MINIVIST in Section 4.

Algorithm A is O(N log N).

The second algorithm, Algorithm B, was proposed by O'Rourke [OROU 82c] to find

an MIS for rectilinear polygons. Algorithm B recursively "cuts" the polygon by extend-

ing edge diagonals of reflex vertices in a careful fashion. Since MINIVIST considers all

such "cuts", it will always find an MIS whenever Algorithm B does. However,

MINIVIST will also find an MIS for the rectilinear polygon in Figure 3-10, whereas Algo-

rithm B will not. Therefore, MINIVIST is more accurate than Algorithm B.

It is difficult to compare MINIVIST's efficiency with that of Algorithm B, since no

mention is made of how Algorithm B is to be computed. Although Algorithm B essen-

tially considers only reflex vertices, it is not clear how long the "consideration" of these

vertices should be. However, since the number of points considered by Algorithm B is

clearly several orders of magnitude smaller than the set considered by MINIVIST, one

may assume that a proper implementation of Algorithm B would most likely be more

efficient than MINIVIST.

One must conclude that where accuracy is of great importance, MINIVIST is supe-

rior to other algorithms; where efficiency is critical, a different algorithm should be con-

sidered.

A test series of polygons was analyzed for minimal isovist sets using the algorithm

MINIVIST. The series is a set of polygons developed by the author which have some

interesting features, and which hopefully will afford some assurance that the implemen-

tation is correct.
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The algorithm MINIVIST was implemented on a VAX 11/780 computer under the

'4IX operating system, using the "C" language. The results of the series of test

lygons are tabulated below. The source code for MINIVIST is listed in Appendix B.
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... means you can have up to 30 vertices
"xn" and "yn" are the coordinates of the nth or last vertex.
c) a blank line follows the last argument (i.e. there is an
extra line after the "yn" argument).

include files */
nclude <stdio.h>
nclude <math.h>

global data declarations */

lefine MAXV 30
lefine MAXV2 600
lefine MAXV4 2000 /* if this isn't enough I'm surprised! */
lefine MAXLINE 80 /* just like a punch card image, eh? */
lefine PI 3.1415927
lefine NEITHER 0 /* special constants for vertical lines */
lefine FIRST 1
lefine SECOND 2
lefine BOTH 3
lefine UPPER 0
lefine LOWER I
lefine POSITIVE 0
iefine NEGATIVE I
lefine REFLEX I
iefine CONVEX 0
lefine TRACEMODE 0
lefine DEBUG 0

static int VEXITY [2] [2] [2] (
{ (CONVEX, CONVEX,), /* upper, z + y+- */

(REFLEX, REFLEX,), /* upper, z- y+- */

{ (REFLEX, REFLEX,), /* lower, z + z +- */
(CONVEX, CONVEX) /* lower, z - z +- */

)

int n; /* number of edges in test polygon */
int m; /* cardinality of the minimal isovist set */
int c; /* cardinality of the candidate set CSET */
int cc; /* index into current candidate */
int cx; /* index into candidate visible from cur cand. */
int un; /* index into subsumed isovists array */
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Appendix B. Program listing for the MINTVIST algorithm.

The algorithm MINIVIST was implemented on a VAX 11/780 under UNIX using

the "C" language. The following is the source code listing for the "C" program imple-

menting the MINIVIST algorithm.

File Name: minivist.c
Author: Mark F. Doherty
Date Created: 1/23/84
Directory: /a/mfd (on the CVL VAX)
Version Number: 1.0
Edit Date: 4/20/84

Purpose: This program calculates a minimal isovist set for
a given polygon.

Input: Polygon vertices {vl,v2,...,vn} are manually input (in order).
Output: 1) An n-gon with its minimal isovist set displayed.

2) Statistical information concerning processing times
needed to calculate the minimal isovist set.

Remarks: Refer to master's paper for further information concerning
the subject in general.

Compilation: To compile, enter "cc /a/mfd/minivist.c -im"
Execution: "a.out <inputfile"

where "inputfile" is a text file which describes the polygon
to be tested, in the following format:
"testid
xl
yl

x2
y2

xn
yn

where:
a) each argument is placed on a separate line.
b) "testid" is a 5-character or less mnemonic name for the
polygon being tested;
"xl" is the x-coordinate value (real number) of the
first vertex;
"yl" is the y-coordinate value (real number) of the
first vertex:
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Appendix A. Calculation of the Candidate Set S.

Input: An arbitrary polygon P in the Cartesian plane represented by the gyntax

error file techreport, between line* 1219 and 1220 real-valued coordinates for its n vertices, P

=V

Given the vertex coordinates, some simple algebra allows us to calculate the

remaining points in the set S. To find the intersection of two lines which are

represented as vjv2 and vav4, one first calculates the equations which signify the two lines,

y= mz+b. "m" is the slope and can be calculated by using the z and z coordinates of the

two points given which determine the 8 0lntaz error file techreport, between line8 1229 and 1229

line: m -. Once rn is found, one can substitute the z and y coordinates of either deter-

mining point to solve for b. After finding m and b for both lines, two linear equations

with two unknowns are left. With some algebra, it is easy to see that the z coordinate

of the point of intersection of the two lines is: z = (b, - bj) / (in, - ,), where i and j are

the two intersecting lines. After having solved for z, it is a simple task to find the

corresponding y by using either linear equation.

It should be noted here that this representation does not work perfectly (on a digi-

tal computer) for two reason: a line might be vertical (so that its slope is infinite), and

the rounding-off process used for floating point computations sometimes causes two

different calculations for the same point to arrive at two slightly different points. The

use of an "epsilon" resolution when comparing two computations for identity solves the

latter problem. The former problem is resolved by special case processing; if a line is

vertical, the z axis is fixed, and intersection and identity are easily resolved due to this

additional information.
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point set complexity [OROU '82b]) a finite set of degree 1 is sufficient to always find a

minimal solution. Could it be the case that for any polygon of degree m, a finite set of

Steiner points of degree m is sufficient for a minimal solution? This or some other rela-

tionship may or may not exist.

2. One area not well developed, both in this paper and in the literature, is the

measurement of the expected or average performance of algorithms given a "random"

sampling of polygons. The question of how one defines a random polygon is non-trivial.

It is important, however, since the NP-completeness of this problem indicates that

worst-case polygons are bound to cause poor performance. If two algorithms had similar

accuracy and computational complexity (as measured by the worst case), a measurement

of expected performance is greatly desired in order to judge which algorithm is better.

In addition, the question of whether a particular polygon can be solved (by

MINIVIST) in polynomial or combinatorial time is of interest. If it could be shown that

certain classes of polygons, perhaps detectable by a small amount of preprocessing,

always yield combinatorial solutions within the context of a certain algorithm, one could

then compare the expected amounts of combinatorial processing.

3. Extension of MINIVIST to a three-dimensional realm would be quite helpful in

applying the results to some real-life application problems.
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7. Summary and Conclusions.

7.1. Proving Minimality

This paper has proposed an algorithm to find a minimal isovist set for a large

number of polygons, and at the same time do so in as efficient a manner as possible. A

complete algorithm (one which guarantees a minimal solution for an arbitrary polygon),

which this paper unsuccessfully attempted to construct, seems to be achievable (albeit

elusive). An approach was suggested by Maruyama [MARU 721 which would exhaus-

tively consider convex maximal decompositions, and then use the property of disjoint-

ness of kernels of the MSC in order to construct a minimal covering. Although the

efficiency of this type of algorithm may be less than that of algorithms using the

approach taken in this paper, it would still be desirable to show that the minimal result

can be found whenever desired.

It seems important to the author that O'Rourke's conjecture be proven (or shown

false). If a trade-off must be made between efficiency and accuracy, one wishes to give

away as little of each as is necessary; showing that a finite set of points can or can not

be used to correctly reduce the search space would automatically place MINIVIST in a

proper context.

7.2. Future Research

1. The first area for future research, apart from finding a complete algorithm, is

clearly the investigation of O'Rourke's conjecture. It may be the case that even though

the conjecture is correct, there still exists some relationship between the degree of com-

plexity of the polygon and the degree of complexity of the finite set of points which

satisfies that polygon. In the case where the degree of complexity is 1 (i.e. star-shaped

polygons), Theorem 3.2 of this paper shows that (as per O'Rourke's definition of Steiner
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TEST NUMBER: A7
POLYGON: (2.00,0.00), (2.00,3.00), (0.00,3.00), (0.00,8.00), (2.00,6.00), (2.00,4.00),

(5.00,4.00), (5.00,8.00), (7.00,6.00), (7.00,3.00), (5.00,3.00), (5.00,0.00).
REFLEX VERTICES:

(2.00,3.00), (2.00,4.00), (5.00,4.00),
(5.00,3.00),

NON-VERTEX POINTS: (6.50,6.00), (7.00,5.00), (4.00,0.00), (7.00,4.67), (0.00,5.00), (7.00,4.40),
(5.00,1.00), (7.00,4.00), (0.00,4.00), (0.00,4.40), (0.00,4.67), (0.50,8.00),
(2.00,1.00), (3.00,0.00), (2.00,3.40), (2.00,3.60), (3.06,1.41), (4.25,3.00),
(3.29,1.71), (3.71,2.29), (3.42,1.89), (4.61,3.48), (4.40,3.20), (3.50,2.00),
(5.71,4.94), (3.11,1.33), (5.46,4.15), (4.50,3.00), (3.36,1.64), (5.40,4.08),
(3.82,2.18), (3.50,1.80), (5.33,4.00), (4.88,3.43), (4.81,3.13), (3.58,1.89),
(5.24,3.88), (5.00,3.60), (5.89,4.67), (3.20,1.20), (6.50,4.50), (3.50,1.50),
(6.25,4.25), (4.00,2.00), (3.64,1.64), (6.00,4.00), (5.33,3.33), (3.71,1.71),
(5.67,3.87), (6.20,4.20), (1.00,4.50), (1.50,3.75), (1.78,3.35), (1.33,4.00),
(1.23,4.15), (1.14,4.29), (2.80,1.80), (3.50,0.75), (2.75,3.25), (2.39,3.13),
(3.87,3.63), (3.50,3.50), (2.60,3.20), (6.09,4.36), (5.88,4.29), (3.00,3.00),
(2.50,3.00), (2.75,3.00), (4.00,3.00), (0.80,4.20), (1.33,3.67), (1.87,3.33),
(1.00,4.00), (0.75,4.25), (0.50,4.50), (3.00,2.00), (3.80,1.20), (1.20,4.80),
(1.11,4.67), (0.67,4.00), (0.82,4.24), (0.91,4.38), (1.29,4.94), (1.78,3.88),
(2.50,3.50), (2.14,3.43), (3.50,3.70), (3.12,3.63), (2.39,3.48), (8.18,4.24),
(5.77,4.15), (3.50,2.50), (4.20,1.80), (1.67,4.00), (1.60,4.08), (1.54,4.15),
(3.18,2.18), (3.89,1.33), (8.33,4.00), (5.67,4.00), (4.50,3.50), (5.00,3.40),
(5.24,3.35), (4.25,3.25), (3.29,2.29), (3.94,1.41), (5.80,4.80), (5.50,3.75),
(6.00,4.50).

NUMBER OF VERTICES (N): 12
NUMBER OF POINTS IN CANDIDATE SET S: 121
MAGNITUDE OF S COMPARED WITH N: CLOSEST TO O(n squared) = 144
SOLUTION IS combinatorial. 12 combinations were evaluated to find a MIS.
NUMBER OF POINTS IN M.I.S.: 2
MINIMAL ISOVIST SET: (2.00,3.00), (5.00,3.00).
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TEST NUMBER: AB
POLYGON: (0.00,2.00), (0.00,5.00), (1.00,3.00), (4.00,3.00), (4.00,7.00), (2.00,8.00),

(5.00,8.00), (5.00,3.00), (7.00,2.50), (5.00,2.00), (4.50,0.00), (4.00,2.00).
REFLEX VERTICES:

(1.00,3.00), (4.00,3.00), (4.00,7.00),
(5.00,3.00), (5.00,2.00), (4.00,2.00).

NON-VERTEX POINTS: (4.00,6.00), (5.00,3.25), (1.50,2.00), (0.00,3.00), (0.00,3.08), (0.00,3.25),
(4.92,1.89), (0.00,3.33), (4.00,8.00), (3.80,2.00), (5.00,6.50), (5.24,2.06),
(3.75,8.00), (3.80,8.00), (3.93,8.00), (4.00,3.25), (4.06,1.76), (5.24,2.94),
(3.75,3.00), (1.33,2.33), (3.25,2.81), (2.50,2.63), (2.29,2.57), (4.94,3.24),
(4.76,3.19), (4.28,3.07), (4.70,3.17), (4.17,3.04), (4.50,3.13), (3.76,2.94),
(1.36,2.27), (3.82,2.76), (2.78,2.58), (2.50,2.50), (3.96,2.79), (4.55,2.91),
(4.17,2.83), (4.03,2.81), (4.00,2.80), (4.81,2.96), (4.30,2.86), (4.68,2.94),
(4.14,2.83), (3.81,2.76), (1.45,2.10), (3.89,2.28), (3.29,2.24), (3.86,2.28),
(4.67,2.33), (4.12,2.29), (4.00,2.29), (5.16,2.37), (4.93,2.35), (4.34,2.31),
(5.00,2.36), (4.65,2.33), (4.05,2.29), (4.89,2.35), (4.31,2.31), (5.09,2.38),
(3.93,2.28), (4.17,2.00), (4.38,2.00), (4.83,2.00), (4.83,2.00), (4.80,3.00),
(4.29,3.00), (4.69,3.00), (4.17,3.00), (3.95,2.75), (4.27,2.73), (4.04,2.75),
(4.00,2.75), (5.09,2.88), (4.86,2.88), (4.31,2.72), (5.00,2.67), (4.67,2.69),
(4.12,2.74), (4.95,2.67), (4.69,2.69), (5.18,2.65), (3.81,2.77), (3.86,2.29),
(4.13,2.22), (4.00,2.25), (4.35,2.16), (4.83,2.09) (4.04,2.24), (4.84,2.04),
(4.20,2.20), (4.60,2.10), (3.93,2.27), (3.81,2.06), (4.18,1.94), (4.37,1.88),
(4.81,1.80), (4.79,1.74), (4.43,1.88), (4.73,6.64), (4.44,5.22), (4.40,5.00),
(4.21,4.05), (4.05,3.24), (3.89,2.44), (5.04.2.83), (4.83,2.86), (4.29,2.95),
(5.00,2.83), (4.68,2.89), (4.16,2.97), (4.97,2.84), (4.86,2.86), (5.20,2.80),
(4.31,2.69), (4.85,2.35), (4.14,2.86), (4.88,2.14), (4.50,2.50), (4.08,2.50),
(4.14,2.14), (4.20,1.80), (4.16,2.03), (4.91,6.55), (4.77,6.62), (4.75,4.00),
(4.50,5.00), (5.20,2.20), (5.13,2.50), (4.71,3.43), (4.45,4.73), (4.79,3.05),
(4.91,2.45), (4.83,2.83), (4.97,2.16), (4.25,3.50), (4.27,3.18), (4.33,2.33),
(4.37,1.84), (4.35,2.06), (5.00,2.17), (4.69,3.08), (4.67,2.67), (4.82,1.90),
(4.63,2.11), (4.20,3.20), (4.83,1.96), (5.04,2.17).

NUMBER OF VERTICES (N): 12
NUMBER OF POINTS IN CANDIDATE SET S: 160
MAGNITUDE OF S COMPARED WITH N: CLOSEST TO O(n squared) = 144
SOLUTION IS combinatorial. 1 combinations were evaluated to find a MIS.
NUMBER OF POINTS IN M.I.S.: 2
MINIMAL ISOVIST SET: (1.00,3.00). (4.00,7.00).
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TEST NUMBER: A5
POLYGON: (0.00,0.00), (0.00,5.00), (3.00,5.00), (3.00.10.00), (0.00,10.00), (0.00,13.00),

(5.00,13.00), (5.00,3.00), (11.00,3.00), (11.00,13.00), (16.00,13.00), (18.00,10.00),
(13.00,10.00), (13.00,5.00), (18.00,5.00), (16.00,0.00).

REFLEX VERTICES: (3.00,5.00),
(3.00,10.00), (5.00,3.00), (11.00,3.00),
(13.00,10.00), (13.00,5.00),

NON-VERTEX POINTS: (5.00,8.33), (16.00,4.38), (5.00,5.00), (12.50,0.00), (3.00,13.00), (3.00,0.0
(1.75,0.00), (8.00,0.00), (5.00,10.00), (5.00,8.00), (5.86,0.00), (2.14,13.00),
(5.00,0.00), (18.00,3.00), (0.00,3.00), (0.00,4.38), (11.00,0.00), (13.88,13.00),
(10.14,0.00), (3.50,0.00), (14.25,0.00), (11.00,8.00), (11.00,10.00), (13.00,0.00),
(13.00,13.00), (11.00,5.00), (11.00,8.33), (2.42,4.03), (4.88,8.13), (3.97,6.61),
(1.80,3.00), (2.25,3.75), (3.00,1.80), (2.06,1.24), (7.43,2.03), (3.00,0.82),
(1.88,0.51), (6.29,1.71), (5.43,1.48), (5.00,1.38), (8.00,2.18), (13.34,3.84),
(13.00,3.55), (13.75,3.75), (4.43,5.00), (3.00,3.80), (2.73,3.91), (11.00,0.60),
(10.38,0.85), (9.29,1.29), (8.00,1.80), (3.00,11.80), (3.00,3.00), (3.00,3.55),
(4.25,10.00), (4.00,9.00), (3.67,7.87), (2.50,3.00), (2.88,3.64), (8.71,1.29),
(1.88,11.13), (2.58,11.54), (5.62,0.85), (5.00,0.60), (13.50,3.00), (13.00,3.00),
(14.20,3.00), (11.00,1.38), (10.57,1.48), (9.71,1.71), (8.57,2.03), (14.12,0.51),
(13.00,0.82), (13.44,11.54), (12.33,7.67), (11.57,5.00), (12.03,8.61), (13.27,3.91)

(13.00,3.80), (13.58,4.03), (13.94,1.24), (13.00,1.80), (14.13,11.13), (13.00,11.80),
(12.00,9.00), (11.75,10.00), (11.13,8.13).

NUMBER OF VERTICES (N): 18
NUMBER OF POINTS IN CANDIDATE SET S: 103
MAGNITUDE OF S COMPARED WITH N: CLOSEST TO O(n log (n squared)) = 88
SOLUTION IS combinatorial. 308 combinations were evaluated to find a MIS.
NUMBER OF POINTS IN M.I.S.: 3
MINIMAL ISOVIST SET: (3.00,10.00), (13.00,10.00), (8.00,0.00).
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00 00 0 0 0 00 0 0 00 0 00 00 0 0 0
000000000000000000000

00 00 0 0 0 000 0000 00 00 00 00

000000000000000000000
011111111111111111111
110111111111111111111

SOLUTION IS combinatorial. 1 combinations were evaluated to find a MIS.
NUMBER OF POINTS IN M.1.S.: 2
MINIMAL ISO VIST SET: (10.27,3.28), (8.43,0.79).

h

P
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TEST NUMBER: A4
POLYGON: (0.50,0.00), (7.30,5.70), (7.00,7.00), (13.00,1.00), (15.00,0.50), (2.00,0.50).
REFLEX VERTICES:

(7.30,5.70), (13.00,1.00), (2.00,0.50).
NON-VERTEX POINTS: (7.84,6.16), (10.63,3.38), (8.50,0.50), (13.61,0.50), (7.80,8.20), (13.50,0.50),

(4.29,3.18), (1.04,0.46), (1.10,0.50), (8.04,2.51), (10.27,3.26), (7.57,2.36),
(8.10,2.22), (8.43,0.79), (4.64,3.09).

NUMBER OF VERTICES (N): 6
NUMBER OF POINTS IN CANDIDATE SET S: 21
MAGNITUDE OF S COMPARED WITH N: CLOSEST TO O(n log (n squared)) = 21
Visibility Matrix V =
110001110000111111001

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
000111001101101001111
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 0 1 1.1 1 1 1 1 1 1 1 1111101111011.111111111

011 1111111111011111110101110011011101111111
0 1 011100110110111111

101111 11011000111111

1101011100001101111111
110111111101111111111

111011111101111111111
111101111111111111111

111101111111111111111

011111111111111111111

110111111111111111111
Lattice Matrix Lof V:
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
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* SOLUTION IS polynomial.
NUMBER OF POINTS IN M.I.S.: 1

* MINIMAL ISO VIST SET: (3.00,3.00).
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TEST NUMBER: A3
POLYGON: (0.00,0.00), (0.00,8.00), (2.00,4.00), (4.00,4.00), (6.00,8.00), (8.00,0.00),

(4.00,2.00), (2.00,2.00).
REFLEX VERTICES: (2.00,4.00), (4.00,4.00),

(4.00,2.00), (2.00,2.00).
NO N-VERTEX POINTS: (8.00,4.00), (0.00,4.00), (0.00,2.00), (6.00,2.00), (1.50,3.00), (1.00,2.00),

(3.00,3.00), (1.00,4.00), (5.00,4.00), (4.50,3.00), (5.00,2.00).
NUMBER OF VERTICES (N): 8
NUMBER OF POINTS IN CANDIDATE SET S: 19
MAGNITUDE OF S COMPARED WITH N: CLOSEST TO O(n log n) - 16
Visibility Matrix V =
1111100101101111000
1110011101101111000

1001111110010010111
0101111010010010111
011 1 1 0 0 11111 1 1 1111

1111101111111111111
0011111111111111111
1111001111111111111

001111011111111111111111 0 0 1 1 1 11 1111111

1111001111111111111

II11100111111111111111 11111 1 1 11 11111

" I001111111111111111S00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 01 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Lattice Matrix LoatV:
0000000000000000000
0000000000000000000
0000000000000000000
0000000000000000000

-. 0000000000000000000
0000000000000000000
0000000000000000000

I 0000000000000000000
S0000000000000000 1

O000000000000000JuO0
~0000000000000000000
~0000000000000000000
°,0000000000000000000

~0000000000000000000

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

~0000000000000000000
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TEST NUMBER: A2
POLYGON: (0.00,0.00), (0.00,4.00), (1.00,2.00), (4.00,2.00), (5.00,4.00), (5.00,0.00).
REFLEX VERTICES:

(1.00,2.00), (4.00,2.00),.
NON-VERTEX POINTS: (5.00,2.50), (2.00,0.00), (5.00,2.00), (0.00,2.00), (0.00,2.50), (3.00,0.00),

(1.60,0.80), (2.50,1.25), (3.40,0.80).
NUMBER OF VERTICES (N): 6
NUMBER OF POINTS IN CANDIDATE SET S: 15
MAGNITUDE OF S COMPARED WITH N: CLOSEST TO O(n log a) = 10
Visibility Matrix V =
111101111111111

111000010110100
111101011111111
101111111101111
1 000111101001001

* 101111111111111
100111111001111
111101111111111
101111111101111

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 11001010111111 

101111111111111
1 11101111111 1 11

101111111111111
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Lattice Matrix L of V:
000000000000000
000000000000000
000000000000000 •
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000

* 000000000000000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 000000000000000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SOLUTION IS polynomial.
NUMBER OF POINTS IN M.I.S.: 2

" MINIMAL ISOVIST SET: (1.80,0.80), (3.40,0.80).

000
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TEST NUMBER: Al
POLYGON: (0.00,0.00), (0.00,2.00), (2.00,2.00), (2.00,0.00).
REFLEX VERTICES:

NON-VERTEX POINTS: (1.00,1.00).
NUMBER OF VERTICES (N): 4
NUMBER OF POINTS IN CANDIDATE SET S: 5
MAGNITUDE OF S COMPARED WITH N: CLOSEST TO O(n log n) - 5
Visibility Matrix V

11111

11111

Lattice Matrix L of V:
00000
00000
00000
00000

SOLUTION IS polynomial.
NUMBER OF POINTS IN M.I.S.: 1
MINIMAL ISO VIST SET: (1.00,1.00).

e

J1
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int temp; /* temporary storage for any procedure *
int nzr;/* number of non-zero rows in L *-
in nzc; /* number of non-zero columns in L e
mn nc; /P number of combinations tried e
long magnitude; /P orders of magnitude of size of candidate set ~
float ftemp; /* temporary floating point storage .
float epsilon; /* precision of resolution allowed in this system e
char testjid [81, order 1301, complexity [181;

struct point I
float x; /* x-coordinate of point e
float y; /* y-coordinate of point ~
mnt is...reflex; /* flag to indicate convexity or reflexivity*/

P[MAXV], /* Polygon represented by vertices e
CSET (MAXV2], /* Candidate set of points e
MIS [MAXV/31, /* Minimal Isovist Set ~
pt; /* test point e

mnt V [MAXV2J [MAXV21 - {{0,0,0)j;/* init to zeroes
mnt L [MAXV21J MAXV2J - {(0,0,0),);/* mnit to zeroes
int LSAVE [MAXV2 J MAXV21 - (10,0,0},}; /* ditto */
mnt C [MAXV2] [MAXV2] = {{0,0,0),);/* Compressed L matrix ~

int UNNECESSARYlMAXV2I; /P array of subsumed isovist(indexes)*/
mnt LINDEX [MAXV2J; /P indexes of nzr's per row of C ~
mnt COMBO [MAXV2J; /* current combination to try e

/* declaration of non-integer functions ~
float getslope ();
float getintercept 0
float getangle 0
float unitlength 0
float distance ~
double calc...possible-combos 0
double factorial 0

P main program e
main (

/ * get vertices of polygon from user
#if TRACEMIODE
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printf ("\nstarting minivist...");
#endif

initialize 9;/* make all sets empty *
getngon 0;/* ask operator to enter test polygon *
minivist 9;/* calculate the minimal isovist set *

/ * now print out the results *
print..results 0;

initialize (

f* set all cardinality index variables to zero, thus
#if TRACEMODE

printf ("\nhere at mnit )
#endif

setting all sets - the null set. .
M=0; /* for the MIS/
n =0; /' for the polygon P '
c =0; /* for the candidate set OSET *
un = 0; /* for the set of subsumed isovists ~
epsilon = 0.00001; f's resolution for floating point calcs /

getngon (

/ * local noun declarations .
char inbuf [MAXLINEJ;

/s get the test identification string /
#if TRACEMODE

printf (" \ngetting the polygon vertices now...");
#endif

getline (inbuf, MAXLINE);
sscanf (inbuf, "%5s", &testjd 0]);
f's input up to MAXV vertices *
while (n < MAXV && getline (inbuf, MAXLINE) > 0)(

sscauf (inbuf, "%4fr, &PlnI.x);
CSET(nJ.x - PjnJ.x;
if (getline (inbuf, MAXLINE) > 0)(

sscanf (inbuf, "%4fr, &P~nj.y);
CSET[n].y - P[nJ.y;

else break;

/'s end of while loop s
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. .

calc-reflex-vertices 0
#if TRACEMODE -

printf (" \n %d vertices grabbed" ,n);
#endif

caic-reflex-vertices (

1* this routine determines if the vertices of the polygon are
reflex or convex

/* local data definitions *
int testy, basev, nextv;
struct point test, next;
float deltax, deltay, slope, xintercept, yintercept;
int half, xsign, ysign;

for (testy - 0; testy < n; testv++){
basev = (testv + ni - 1) % n;
nextv = (testy + 1) % n;
/ * translate base vertex to origin .
deltax = 0.0 - P[basevl.x;
deltay = 0.0 - P~basev].y;
test.x =P[testvj.x + deltax;
test.y =P[testvJ.y + deltay;
next.x =P[nextvl.x + deltax;
next.y =Pjnextv].y + deltay;
/* check for vertical edge */
if (fabs (test.x) <= epsilon){

/* edge is vertical - special case
if (test.y > 0.0)(

/* in upper half of plane ~
P[testv].is-jeflex=

(next.x>0.O)? CONVEX: REFLEX;
continue;

else(
/* lower half of plane ~
P [testy] .is...reflex =

(next.x>0.0)? REFLEX: CONVEX;
continue,

/ * not vertical - calculate slope ~
slope - test.y / test.x;
yintercept -nexty- (slope*next.x);
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/* check for horizontal edge */
if (tabs (test.y) <- epsilon) {

/* edge is horizontal - special case
if (test.x > 0.0) {

P[testv].isjreflex -
(yintercept>0.0)? REFLEX : CONVEX;

continue;
I
else (

P[testv].is,.reflex
(yintercept>0.0)? CONVEX REFLEX;

continue;}
}
/* can now proceed for "normal" cases
xintercept = (-yintercept) / slope;
half = (test.y>0.0)? UPPER : LOWER;
xsign - (xintercept>0.0)? POSITIVE : NEGATIVE;
ysign - (yintercept>0.0)? POSITIVE : NEGATIVE;
P[testv].is-reftex = VEXITY [halt] [xsign] [ysign];

minivist 0{
/* step 0: initialize the minimal set and candidate set */
/* calculate the (non-vertex) candidate set of points */

#if TRACEMODE
printf ("\nhere at minivist");

#endif
calc_setS 0; /* step 0 */
calcisovists ); /* step I */
calclattice (); /* step 2 */
findminimals (); /* steps 3 and 4 */

/* step 5 : return to main and print results */

calcsetS()
/* this function computes the points in set S */
(

/* For each diagonal of P, determine if it lies wholly within P.
(i.e. it is not occluded, nor is it exterior to P). If so, try
to extend the diagonal into P. If it can be extended, include
the point of intersection of the extended diagonal with the boundary
of P. Also, try intersecting all diagonals which lie interior to P.

56



If an intersecting point also lies interior to P, include it also. */

/* local data definitions */
int vI, v2; /* bounding vertices of diagonal being considered */
int dl, d2; /* current diagonals being intersected */
int d; /* index into array of saved diagonals */
struct point DIAG [2] [MAXV4]; /* diagonals interior to P */

/* start of code for calc set S f

#if TRACEMODE
printf ("\ncalc set-s");

#endif
d - 0; /* initialize index into array *1
for (vI = 0; vi < n; vl++) {

/* ignore next adjacent vertex - cannot extend an edge *f
for (v2 = v1+1; v2 < n; v2++) {

#if TRACEMODE
printf (" \nvI=%d,v2=%d" ,vI,v2);

#endif
/* if this diagonal is occluded or lies exterior to P,
don't use it */
if (is_occluded (P[vl],P[v2J) != NULL) continue;
if (isexterior (P[vl],P[v2I) != NULL) continue;
/* okay - this is an interior diag - save it */

if (d >= MAXV4) printf ("\nFATAL ERROR diag no room");
DIAG[O][d].x - P[vl].x;
DIAG[O][d].y = P[vl].y;
DIAG[II[d].x = P[v2J.x;
DIAG[IJ[dJ.y = P[v2J.y;
/* now - can we extend this diag inside of P? */
if (P[v2].isreflex =- REFLEX) {

if (is-.extensible (Pfvl],P[v2]) != NULL) (
DIAG[iI[dl.x - pt.x;
DIAG[1][d].y - pt.y;
/, yes - include bounding point */
insertpointintocset (pt);

)

if (P[vlJ.is-reflex =- REFLEX) {
if (is..jextensible (P[v2j,P[vi]) != NULL) (

DIAG[O][d].x = pt.x;
DIAG[O][d].y - pt.y;
insertpoint_into_cset (pt);

)

++d;

/* all diag's have been analyzed; now look for intersection points
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of interior diagonals */
#if TRACEMODE

printf (" \nintersect diags with d=%d", d);
#endif

for (dl == 0; dl < d; dl++) {
for (d2 = dl+1; d2 < d; d2++) {

#if TRACEMODE
printf ("\ndl-%d,d2- %d",dl,d2);

#endif
if ((line intersect(D IAG [0] [dl ].DIAG[1 ][di 1,

DIAG[0][d21,DIAG[1[d2) != NULL)
&& (is_interior (DIAG [0][dl J,DIAG [1] [dl ],pt)!= NULL)
&& (isjinterior(DIAG [0][d2,DIAG[l][d2,pt)!=NULL))

insertpoint-intocset (pt);

calc_isovists 0{
/* this routine calculates the isovists of the current members of
CSET, the candidate set of minimal points. */

/* local data definitions */
int occluded; /* flag for occlusion test */

/* start of code for calcisovists */
#if TRACEMODE

printf ("\ncalcisovists");
#endif

/* check out all possible candidate points */
for (cc = 0; cc < c; cc++) {

/* consider line segment from cc to all other candidates */
/* must determine visibility i.e. member of isovist of cc
for (cx - cc; cx < c; cx++) (

if (cx cc) (
/* obviously visible from self *f
insertjsovists 0;
continue;)

/* check to see first if the line segment from cc to ex is
exterior to the polygon. If so, return the NULL+l value which
indicates "occlusion", since we do not consider the points
visible to each other. */

if (is..exterior (CSET[cc],CSET[cx]) != NULL) continue;
/* must see if line seg cc-cx intersects an edge

other than edges attached to cc and cx (if any) */
occluded - is_occluded (CSET[cc],CSET[cx]);
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if (occluded -- NULL) insert_isovists 0;
}

caic_lattice (){
/* this routine determines which isovists are subsumed by
other isovists, and declares them to be "unnecessary" as far
as the minimal isovist set goes */

/* local data definitions */
int i, j;

/* start of code for calc_lattice */
#if TRACEMODE

printf ("\ncalcjlattice");
#endif

for (i - 0; i < c; i++) {
for (j = i+1; j < c; j++) {

if (is.subset (i j) != NULL) {
/* i is a subset of j */
insert_unnecessary (i);
break;}

if (is.subset (j,i) != NULL) insert..unnecessary(j);}
}
/* now construct the lattice L by copying only rows of V
which are considered necessary at this point */
for (i = 0; i < c; i++) {

if (isunnecessary (i) == NULL)
/* it IS necessary - copy this row
for (j == 0; j < c; j++) L[i] = V[i] Ul];

)
/* save lattice for results printout in spare buffer */
for (i = 0; i < c; i++) {

for (j - 0; j < c; j++) (
LSAVE [il Dj] = L [i] U];

findminimals 0(
/* this routine determines which candidate points are absolutely
necessary members of the Minimal Isovist set. It also does
"garbage collection" by determining what remaining candidate points
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exist following this iteration of MIS calculation, and putting only
those points in the (new) CSET. */

/* local data definitions */
int col,row, sum;

/* start of code for find_minimals */
#if TRACEMODE

printf ("\nfindamin;c=%d" ,c);
#endif

for (col = 0; col < c; col++) {
/* sum this column */
sum = 0;
for (row = 0; row < c; row++) sum +- L[row] [coil;
if (sum ==- 1) {

/* find guilty row
row = 0;
while (L [row] [coil = ) ++row;
insertMIS (row);

}
)
/* are we all done? If the matrix sums to zero, wow! */
sum - 0;

for (row =0 ; row < c; row++) {
for (col = 0; col < c; col++) {

sum += L [row] [coil;
}

)
if (sum == 0)

strcpy (complexity, "polynomial ");
else {

strcpy (complexity, "combinatorial ");
combinatorics O;

}

/* subroutines ,1

is-occluded (pl, p2 )
struct point pl, p2; /* bounding points for a line segment */
4

/* this routine determines if a particular diagonal or segment of P
is occluded (i.e. cut by some edge of P). */
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/* local data definitions */
int edge;

/* start of code */
#if TRACEMODE

printf ("\nis occluded");
#eudif

for (edge - 1; edge <- n; edge++) {
if (line_intersect (P[edge%n], P[edge-1, pl, p2) -= NULL)

continue; /* not occluded by this edge */
/ since the lines formed by edge and plp2 intersect,
is it a bifurcation of the diag by the edge??? */
if ((is_interior (pl, p2, pt) ! NULL)
&& (is-interior (P[edge%n], Pledge-I], pt) !- NULL))

/* interior to both implies bifurcation */

return (NULL+1);
}
/* since we've gotten to this point, no occlusion has taken place *1
return (NULL);

lineintersect (el, e2, pl, p2)
struct point el, e2; /* first segment - generally an edge of P */
struct point pl, p2; / second segment - prob. a diagonal of P */
{

/* this routine determines if the two line segments ele2 and plp2
intersect. If they do not, NULL is returned. If they do intersect,
NULL+I is returned AND the intersection point is stored in the
global point "pt". */

/* local data definitions */
float eslope, Islope;
float eintercept, lintercept;

/* start of code for lineintersect */
/* first do special case processing for infinite sloping lines*/

#if TRACEMODE
printf ("\nline intersect");

#endif
switch (checkverticals (el, e2, pl, p2)) {

case NEITHER: break; /*continue with regular calc. *f
case FIRST: /* edge is vertical */

Islope - getslope (pl,p2);
lintercept = getintercept (pl, Islope);
/* since e is vertical, z is fixed - so use it! *f
pt.x - el.x;
pt.y - (lslope*(pt.x))+lintercept;
return (NULL+l);

case SECOND: / second segment is vertical */

Si
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eslope =getslope (eI,e2);
eintercept -getintercept (el, eslope);
pt.x - pl1.x;
pt.y = (eslope*(pt.x))+eintercept;
return (NULL+1);

ewse BOTH: /* both lines vertical *
return (NULL);

)soe-gtlp ee)
eslope - getslope (el, p2);

/*are they parallel? */
if (fabs(eslope-lslope) <- epsilon)

return (NULL);
/*now get intercepts and calculate point of intersection *

eintercept - getintercept (el, eslope);
lintercept = getintercept (p1, Islope);
pt.x - (eintercept - lintercept) / (Islope - eslope);
pt.y - (eslope * (pt.x)) + eintercept;
return (NULL+1);

check_verticals (dl, d2, ptl, pt2)
struct point dl, d2; /* diagonal of the polygon P ~
struct point ptI, pt2; /*some other line segment *

/see if either line segment is vertical by checking
to see if the z coordinates are identical ~

#if TRACEMODE
printf ("\ncheck...erticals");

#endif
if (fabs(d I .x-d2.x )< =epsilon){

if (fabs(ptl .x-pt2.x) < -epsilon)
return (BOTH);

else
return (FIRST);

if (fabs(ptl .x-pt2.x)< =epsilon) return (SECOND);
return (NEITHER);

pointjnclusion (pt)
struct point pt;

/* local data definitions '
float sum;
struct point cur;
struct point next;
float theta;
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/* N.B.
This routine uses a test for point inclusion in a polygon found in

W.K.Giloi's book "Interactive Computer Graphics" (Prentice-Hall,1978),
page 159, called "The Containment Test". I have not seen a proof for this
test; however, Giloi claims that it is a well-known procedure in elementary
geometry. It seems reasonable, and is similar to a method used by Freeman
and Loutrel in their solution to the Hidden-Line problem (1967). */

/* Special NOTE: This test DOES NOT WORK if the test point
is on the boundary of P. This is because sin and cosine are in-
distinguishable at 0 and 180 degrees (ie pi and -pi); the test will
erroneously treat a negative "sweep" of 180 as a positive sweep. */
#if TRACEMODE

printf ("\npoint inclusion");
#endif

sum = 0;
/* check for special case - is point on perimeter of P? */
if (is_on_boundary (pt) != NULL) return (NULL+1);
/* see if test point is at vertex 0 */
if ((fabs(P[0.x-pt.x)< ==epsilon) & (fabs(P[0].y-pt.y)< =epsilon))

return (NULL);
cur.x - P[O1.x - pt.x;
cur.y - P[0j.y - pt.y; /* translate for test point at origin */

for (temp = 0; temp < n; temp++) 4
/* translate next point */
/* first check to see if test point is at vertex next */
if ((fabs(P [(temp+ 1)%nj.x-pt.x) <=epsilon)
&& (fabs(P[(temp+ 1)%n].y-pt.y) <-epsilon))

/* pretend no intersection - already in CSET */
return (NULL);

next.x - P[(temp+l)%n].x - pt.x;
next.y - P[(temp+l)%n].y - pt.y;
/* determine angle between these two normalized vectors */
theta = getangle (cur, next);
/* add the angles up */
sum += theta;
/* cycle to next vertex in polygon */
cur.x = next.x; cur.y next.y;}

/* now return NULL if sum is zero, NULL if = 2pi */
if (fabs (sum) > 3.0)

return (NULL+1);
else

return (NULL);

is-extensible (vl ,v2)
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truct point vi, v2;

/* this routine determines if a segment is extensible from point
vi through point v2 to a boundary of P. */

/* lo-al */
int edge;

/* start of code */
if TRACEMODE

printf ("\nis.extensible");
endif

for (edge = 1; edge <- n; edge++) (
if (line_intersect (Pledge%n], P[edge-I], vi, v2) =- NULL)

continue;
/* do they intersect along the edge selected? */
if (is-interior (Pledgen],P[edge-I],pt) == NULL) continue;
/* it does intersect - but in the correct direction? */
if (fabs (vl.x-v2.x) <- epsilon) (

/ vertical line - direction depends upon z coor
if ((vl.y>v2.y) && ((pt.y-v2.y)>=-(-epsilon))) continue;
if ((v.y<-v2.y) & ((pt.y-v2.y)< ==epsilon)) continue;
/* possible point - is it inside P? */
if (is.exterior(v2,pt) =- NULL)

return (NULL+I);
else

continue;}
/* not a vertical line - direction depends upon z coor
if ((v l.x >v2.x) && ((pt.x-v2.x)> -(-epsilon))) continue;
if ((vl.x<v2.x) && ((pt.x-v2.x)< =epsilon)) continue;
/* possible */
if (;,_exterior (v2,pt) === NULL) return (NULL+i);

)
return (NULL); P no extensible point found in this direction */

son_boundary (pt)
truct point pt;

/*This routine determines if the test point is on the
ierimeter of the polygon P. It does so by checking the distance
f the point from the edge segment. The code for this routine was
orovided by Gyorge Fekete. The routine then determines if
he point is interior to the (collinear) edge. */
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/* local data definitions *
int edge;

/* check each edge *
#if TRACEMODE

printf (" \nis..on boundary");
#endif

for (edge = 1; edge <= n; edge++)4
if (fabs (distance (pt-x, pt.y, P[edge~n].x, P[edge%n].y,

P[edge-IJ.x, P[edge-1J.y)) > epsilon)
continue; Ps not collinear */

/* pt is collinear - is it inside edge segment? *
if (is-..interior (P[edge'%nJ, P[edge-11, pt) != NULL)

return (NULL+1);

/* not on any edge in this polygon - therefore not on boundary*/
return (NULL);

float
distance(px, py, gxl,gyl, gx2,gy2)
float px, py; /* the point *
float gxI~gyI; /* base line ~
float gx2,gy2; /P end line *

4/* func begin */
float r;
float gammal, gamma2, gamma3;

#if TRACEMODE
printf ("\ndistance");

#endif
gammal - gyl - gy2;
gamma2 -gx2 - gxI;
gamrna3 = (gxI * gy2) - (gx2 * y;
r = gammal * px + gamma2 * py + gamma3;
r /= sqrt(gaminal * gammal + gamma2 * gamma2);
return(r);

insert...point-.into...set (pt)
struct point pt;

/* N.B.
This routine must check to make sure that the intersection point

of the two extended edges is not already in the candidate set. This routine
is thus responsible for keeping track of the cardinality of OSET. *
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/* local data definitions *
mnt already.Jn;

/* start of code for insert..point into_cset I
'RAG EMODE

printf (" \ninsert-point-into-sset");
if

alreadyin = NULL;
tar (temp - 0; temp < c; temp++)

/* compare test point pt against current cset entry *
if ((fabs(CSET[templ.x-pt.x)< -epsilon)
&& (fabs(CSET[templ.y-pt.y)< =epsilon))

/* ahab! it's already inside OSET! *
already-in == NULL+I;

if (already-in =- NULL)
/* it isn't in CSET - so put it in *
if (c > MAXV2) printf ("\nFATAL ERROR: no room in OSET");
else (
CSET[cJ.x - pt.x;
CSETjcj.y = pt.y;

)pe (dl,d2)
t point di, d2; /* bounding vertices of diagonals *

/* this routine calculates the slope of an edge of P *
/* WARNING: THIS ROUTINE ASSUMES A NON-VERTICAL LINE IS INPUT *

/* local data definitions *
float slope;

/* start of code for getslope *
'RACEM ODE

printf ("\ngetslope");
[if

ftemp =dl.x - d2.x;
slope =(dl.y - d2.y) /ftemp;
return (slope);

tercept (e, slope)
t point e;
slope;
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it, level;

/* local *
int last..entry;

/ * note: this is a recursive routine which determines the
next combination of non-zero-rows taken "level" at a time. *

last -entry -digit + nzr - level;
if (COMBO [digit] === last....entry)(

next-combo (digit-i, level);
COMBO [digit] = COMBO [digit-i] + 1;

else{
++COMBO [digit];

-covers (level)
el;

/* this routine determines if a particular combination of
non-zero rows in the lattice L covers the remaining set of
non-zero columns. */

/* local data definitions s
mnt sum, col;

/ * this combo covers the remainder of the polygon iff for every
remaining element, one of the combo's isovists sees the element. .
sum = 0;
for (col = 0; col < nzc; col++)(

sum +- coversum (0, col, level);

,BUG
if (level == 3)(

CSET [LI NDEX [C OM BO(O]IJ.x,CSET [LINDEX [COMBO [0]]] y,
CSET [LINDEX[COMBO( J1f]x,CSET [LINDEX[COMBO [I f].y,
CSET[ILINDEX[COMBO[(2]11.x,CSET [LINDEX [COMBO [2]]] .y);
printf V~ and sum - %d", sum);

r
if (sum -- nzc)

return (NULL+1);
else

return (NULL);

so

-------------------------- ----. . ..



nzc = Ccol;

double
calc..possible.combos (n, r)
int n,r;{

/* local definitions */
double rfac, result;
int rx;

/* calculate number of possible combinations of n things taken
r at a time, which equals n! / [(r!X(n-r)!)]. '1

result - I;
for (rx - n; rx > r; -rx) result * rx;/*n!/r*/
rfac = factorial (n-r);
result /- rfac;
return (result);

double
factorial (n)
int n;

double answer;

answer - n;
for (temp = 2; temp < n; temp++) (

answer *- temp;}
return (answer);

init..combos (level)
int level;
(

for (temp - 0; temp < level-i; temp++) {
COMBO jtempi - temp;

}
COMBO flevel-l] - level-2;

nextcombo (digit, level)

79

-, -,- -,- . .- - - - . - .- . . . . . . .



}
}
if (foundcombo !- NULL) break;}

if (foundcombo - NULL) (
/* uh oh - must use entire lattice!!!!! */
init_combos (nzr);
next_combo (nzr, nzr);
insertcombo (nzr);)

_C_matrix()

/* this routine compresses the L lattice matrix by eliminating
rows and columns which are composed entirely of zeroes. The
array LINDEX remembers to which row in L a given row in C corresponds.
By doing this once, we do not have to scan for the next significant
row (or column) every time we try a new combination. */

/* local data definitions a/
int Crow, Ccol, row, col;

/* start by eliminating rows full of zeroes
Crow = 0;
for (row = 0; row < c; row++) {

if (rowsum (row) - 0) continue;/* ignore zeroed row
/* if non-zero, compress by moving into C */
LINDEX (Crow] = row;
for (col = 0; col < c; col++) {

C [Crow] [col) = L [row] [col];)
++Crow;)

nzr - Crow; /* number of non-zero rows

/* now compress zeroed columns */
Ccol = 0;

for (col = 0; col < c; col++) (
if (colsum (col) =- 0) continue;
/* compress this non-zero column */
for (row - 0; row < nzr; row++) {

C [row] [CcoI] - C [row] [coil;

++Ccol;

78

-.-...- , .-. .. . ...- .."......- -. -- -



of isovists in order to determine a truly minimal isovist set.
This routine is called only when the algorithm finds no obvious
solution in polynomial time. It only searches the reduced lattice
(i.e. only those members of the lattice which do not see a
point uniquely - some other member of the lattice always sees
a point that it sees). It i3 possible (Version 2.0) to introduce
a heuristic approach in determining which combination of lattice
elements should be selected for testing (i.e. the order of priority
for testing combinations at some level). The current version of
this algorithm simply tries all combinations in order of appearance
within the lattice L. */

/* local data definitions */
int level, curcombo, foundcombo;
double nr_combos;

/, start of code for combinatorics */
nc = 0; /* initialize number of combinations tried */
found_combo - NULL;
initC_matrix 0);

#if DEBUG

printf (" \nhere at combinatorics");
printf ("\n nzr = %d, nzc = %d", nzr, nzc);

#endif

for (level = 2; level < nzr; level++) {

/* consider all combinations of non_zero_row elements
taken "level" at a time. Since we start with level =- I
and work upwards, we are guaranteed in this fashion
to find the minimal combination first. ,/

nr_.combos = calcpossible .combos (nzr, level);
init.combos (level);

#if DEBUG
printf ("\nnr..combos - either %d or %ld" ,nr_combos, nr..combos);
printf (" and found-combo is %d", found.combo);

#endif

for (curcombo - 1; curcombo <= nr..combos; curcombo++) {
++no;

next..combo (level - 1, level);/* recursive */
if ((combo..covers (level) != NULL)
&& (check-covering (level) !- NULL)) (

/* we've found it! */
foundSombo - NULL+I;
insertcombo (level);
break;

77

-. .. ' . - -.-. '." ""--. ...- -. ' -. '..."."-. . . . . .. , . . .. "• "." . -,



int closest;
static struct orders{

char name [301;
double value;
)OMTABO=

,n 0,
"n loga", 0,
"n log (n squared) ",0,

"n squared ", 0,
"n squared log n", 0,
"n squared log (n squared) ",0,

"n cubed ", 0,
"n cubed logn u", 0,
"n cubed log (n squared) "9, 0,
"n to the fourth ', 0

/* start of code *
/* first initialize all values properly based on n
fc = c;
closest =0;
OMTAB[O).value = n
logn = log (OMTAB[0J.value);
OMTAB[3].value - a * n;
logn2 -log (OMTAB[3].value);
OMTAB[1J.value - a * logn;
OMTAB[2].value = n * logn2;
OMTAB[4J.value - OMTAB[3J.value * logn;
OMTAB[51.value =OMTAB[3J.value * logn2;
OMTAB[81.value =OMTAB[3.value * n;
OMTAB[71.value -OMTAB[8].value * logn;
OMTAB[8J.value -OMTAB[61.value * logn2;
OMTAB[91.value =OMTAB[OJ.value * n

/ * now calculate closest value to actual size of set S *
for (temp - 1; temp < 10; temp++) {

if (fabs (fc - 0OMTAB~templ -value) <
fabs (fc - OMTAB[closestj.value))

closest - temp;

strcpy (order, OMITABIclosesti.name);
magnitude - OMTAB[closestj.value;

combinatorics (

/'. This is the algorithm which exhaustively searches the lattice
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print! ".)

print! ("\nNON-VERTEX POINTS:");
if (n ==c) print! ( (none).");
else(

pointcount =0;

for (temp - n; temp < c-1; temp++){
print! (" ('73.2f,%3.2f),", CSET [ternpl.x,CSET [temp] .y);
if (++pointcount -- MAX_ON_1_LINE){

pointcount - 0;
print! ("\n");

print! ( (%3.2f,%3.2f).", CSET[c-l].x,CSET[c-Il~y);

print! ("\nNUMBER OF VERTICES (N): %d", n);
print! ("\nNUMBER OF POINTS IN CANDIDATE SET S: %d", c);
calc-order ();
print! ("\nMAGNITUDE OF S COMPARED WITH N: CLOSEST TO O(6W

order, magnitude);

printjattice ();
print! ("\nSOLUTION IS %s.", complexity);
if (complexity [01 -- 'c)

print! (" %ld combinations were evaluated to find a MIS.",
nc);

print! ("\nNUMBER OF POINTS IN M.I.S.: %d", in);

print! ("\nMINIMAL ISOVIST SET:");
pointcount = 0;
for (temp = 0; temp < rn-I; ternp++)(

print! (" (%3.2f,%3.2f),", MIS [temp] .x,MIS [ternp].y);
if (++pointcount -- MAX_ON_1....INE){

pointcount = 0;
print! ("\n");

print! ( (%3.2f,%3.2f).", MIS [mn-] 1.x,MIS [rn-li.y);
print! ("\n ");

for (temp - 0; temp < 72; temp++) print! "-)

print-.polygon 0

calc order (

/* this routine calculates the order of magnitude of the
size of the search space used in finding the MIS *

/* local definitions */
double logn, logn2, fc;
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print-..visibility0

int e;
/* print the isovist visibility matrix V *
printf ("\nVisibility Matrix V -=)
for (temp = 0; temp < c; temp++){

printf (" \n");
for (e - 0; e < c; e++){

printf (" %d ", V [temp] [e]);

print..results 0)

/* this routine prints out a table of results *
/* local data definitions *
nt, pointcount;

#define MAX..0NJ-..LINE 8 /* number of cartesian points per printline e

/' start of printout */
printf ("\nOEST NUMBER: %s", testid);
printf ("\nPOLYGO N:");
pointcount - 0;
for (temp - 0; temp < n-1; temp++){

printf (" (%3.2f,%3.2f),", P [temp].x,P~temp] .y);
if (++pointcount -- MAXON-Ij..INE){

pointcount - 0;
printf ("\n");

printf ( (3.2f,%3.2f).",P[n-lJ.x,P[n-l].y);/* last point *
printf ("\nREFLEX VERTICES:");
for (temp - 0; temp < n-1; temp++)(

if (P~temp].is-reflex -- REFLEX)
printf (" (%3 .2f,%3.2f),", P Itempi .x,Pjtemp] .y);

if (++pointcount =- MAX....NJj.LINE)(
pointcount = 0;
print ("\n");

itf(P(n-I.isreflex -- REFLEX)
printf ("(%3.2f,%3.2f).", P fn-I ].x, P[n- 1J.y);

else
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#endif
for (temp - 0; temp < m; temp++)

if ((MIS [tempi .x == CSET [cindex] .x)
k& (MIS~tempJ.y == CSET[cindexj.y))

return (NULL+1);

return (NULL);

set-col-to-zeroes (col)
tnt col;

/* this routine sets a particular column of the lattice matrix
to zeroes, indicating that this point is now visible
(i.e. covered) from some point in the MIS *

#if TRACEMODE
printf (" \nset.colto.zeroes");

#endif
for (temp = 0; temp < c; temp++) L [tempJ fcolJ - 0;

set-row-to~zeroes (row)
mnt row;

/ * this routine sets a particular row of the lattice matrix
to zeroes, indicating that this point is part of the
MIS '

#if TRACEMODE
printf (" \nset r-ow_ to_zeroes");

#endif
for (temp - 0; temp < c; temp++) L [row] [temp] 0;

print-lattice (

/* local declarations '
int row, col;

/* print row by row
printf ("\nLattice Matrix L of V:");
for (row - 0; row < c; row++)

printf ("\n");
for (col - 0; col < C; col++)

printf ("%d, LSAVE [row] [coil);
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is-..unnecessary (cindex)
int cindex;

/* this routine determines if a candidate point is a member

#if RACEODEof the set of unnecessary (ie subsumed) candidate points .

printf ("\nis_..unnecessary");
#endif

for (temp -0; temp < un; temp++){
if (cindex -- UNNECESSARY Item pI) return (NtJLL+ 1);

return (NULL);

insertMIS (cindex)
int cindex;

fe local data declarations *
int col;

/* this routine inserts a candidate point into the minimal
isovist set. */
/* first make sure it's not already inside MIS, okay? *

#if TRACEMODE
printf ("\ninsert..MIS");

#endif
if (is-minimal (cindex) !- NULL) return;
/* okay - insert it */
MIS[mI.x -CSET[cindexj.x;

MJS~mj.y -CSET[cindex].y;

/now clear out columns seen by this point *
for (col - 0; col < c; col++) (

if (L (cindexj (coil -- 1) set...solto..zeroes (col);

set_row-to_zeroes (cindex);
insertunnecessary (cindex);

++m

is-minimal (cindex)
int cindex;
I

/ * this routine checks to see if a candidate point is a member
of the (current) MIS *

#if TRACEMODE
printf ("\nis-minimal");
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#endif
V [key] jisoj 1;

is_subset (01j)
int i;
int j;

/* Burning Question:
Is the isovist of candidate point i a subset of the isovist of

candidate point j??? This routine answers that question. *

/* local data definitions *1
int ii; /* current point in i's isovist being looked for *

/ * start of code for is~.subset */
/* i is a subset of j iff for all ii from 0 to c, VfiJ[iij=1 implies
that VU][ii]=1 also. That is, if V[i][iij=1 and VUI[ii]=O, then

is NOT a subset of ./
#if TRACEMODE

#endif
for (ii = 0; ii < C; ii++){

if ((V ji] [ii] === 1) && (V U]J [ili= 0))
/* i is NOT a subset ofj/
return (NULL);

return (NULL+1); /* fell through means i is subset *

insert-unnecessary (index)
int index;
f

/* make sure that it isn't already subsumed '
#if TRACEMODE

printf ( \ninsert-..unnecessaryw);
#endif

for (temp - 0; temp < un; temp++)
if (UNNECESSARY[templ = index) return;

UNNECESSARY[unj -index;

++n
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/* select a midway point which is not a vertex *
div *- 2; /* try an inbetween point e

ptemp.x
(tabs (pl.x) > tabs (p2.x))!

((pl.x - p2.x) /div) + p2.x:
((p2.x - pl.x) /div) + pl.x;

ptemp.y =
(tabs (pl.y) > fabs (p2.y))!

((pl.y - p2.y) /div) + p2.y:
((p2.y - pl.y) /div) + pl.y;

while (is_..vertex (ptemp) != NULL);
/* okay - our selected mid-way point is not a vertex *
if (point-jnclusion (ptemp) !- NULL)

return (NULL);
else

return (NULL+i);

is-vertex (pt)
struct point pt;

/* this routine determines if the test point is a vertex of
the given polygon P *

#if TRACEMODE
printf (" \nis...ertex");

#endif
for (temp = 0; temp < n; temp++){

if ((fabsqpt.x-P[templ.x)< ==epsilon)
&& (fabs( pt.y-P [temp] .y) < =epsilon))

return (NULL+1);

return (NULL) /* not a vertex *

insert -one-isovist (key, iso)
mnt key;
mnt iso;

#if TRACEMODE
printf ("\ninsert onejisovist");
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f* vertical - use z axis
X1 Pl.Y;
x2 =p2.y;
coor - pt.y;

else(
/* not vertical - use the z axis
X1 pl.x;
x2 - p2.x;
coor = pt.x;

/now determine if "coor" lies between x1 and x2 *
if ((xl-x2) < epsilon) (

if (((coor-xl )> epsilon)&&((coor-x2) <-epsilon)) return (NULL+ 1);

else {
if (((coor-xl ) <-epsiloni)&&((coor-x2) >epsilon)) return (NULL+ 1);

/*no go
return (NULL);

isexterior (p1 ,p2)
struct point p1, p2;

/* local data definitions *
mnt div;
struct point ptemp;

/* this routine determines if the line segment plp2 lies
exterior to the polygon. It does this by considering some
point, NOT A VERTEX OF P, which lies between the points cc
and cx along the line segment cc-cx. If this point is
exterior to the polygon, the entire line segment is, for
our purposes, considered "exterior" (i.e. not visible). .

/' first check to see if point cc - point cx
#if TRACEMODE

printf ("\nis..exterior );
#endif

if ((fabs(p1.x-p2.x)< -epsilon)
k& (fabs(pl .y-p2.y)< -epsilon)) return (NULL);

div - 1;
do{
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dirsin2 =p2.y /len2;

/ * now calculate sine and cosine of angle between vectors *
sin..theta = dirsini *dircos2 - dircosi * dirsin2;
cos_..theta = dircosi dircos2 + dirsinI * dirsin2;

/now compute the actual angle using sin and cosine *
theta = (asin (sin-theta) < 0.0)? acos(cos...theta) -acos(cos....heta);
return (theta);

float
unitlength (p1)
struct point pl;

/* calculate the length from origin to the point ~
#if TRACEMODE

printf ("\nunitlength");
#endif

return (sqrt ((pl.x *pl.x) + (PL~Y PL*

insert-isovists (

/ * since cx is visible from cc, cc is visible from cx. Therefore,
put cc into cx's isovist and cx into cc's isovist. *

#if TRACEMODE
printf (" \ninsertjsovists");

#endif
insert_one-isovist (cc,cx);
insert_one_isovist (cx,cc);

is_interior (pl,p2,pt)
struct point pi, p2, pt;

/* this routine determines if point pt is interior to the
line segment bounded on the z axis by the two parameters *

/* local data ~
float xl, x2, coor;

/* Check to see if line segment bounded by p1 and p2 is vertical *
/* if it is, we must use the z axis in lieu of z axis *

#if TRACEMODE
printf (" \nisjnterior");

#endif
if (tabs (pl.x-p2.x) <- epsilon)(
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/* local data definitions *
float intercept;

/ * start of code - see "getslope" for comments *
#if TRACEMODE

printt (" \ngetintercept");

#endif intercept = e.y - (slope e )
return (intercept);

float
getangle (p1, p2)
struct point p1;
struct point p2;

/ * calculate the angle between two vectors (from origin) *
/* local data definitions f
float leni, len2;
float dircosi, dircos2, dirsinI, dirsin2;
float sin-theta, cos-theta, theta;

/* get length of vectors *
#if TRACEMODE

printf ("\ngetangle");
#endif

lenI= unitlength (p1);
len2 =unitlength (p2);

P calculate direction angle sines and cosines *
if (leni <== epsilon)(

/ * zero-valued length -problem! s
/ * pick one coordinate as more important (non-zero)*/
dircosi (pI.x<=epsilon) ?0 :1;
dirsinI= (pl.x<=epsilon)! 1: 0;

else ( /* okay to divide by lenI *
dircosi = p1.x /leni;
dirsinI = pl.y /leni;

Pnow calculate second vector's directional angles .
if (len2 <~= epsilon) (

P~ don't divide by zero
dircos2 - (p2.x< =epsilon) ? 0:1;
dirsin2 - (p2.x<=epsilon) ? 1: 0;

else (/* okay to dividenr len2 *
dircos2 =p2.x / lei,'&;
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coversum (digit, col, level)
iut digit, cot, level;

if (digit ==level-i)

return (C [COMBO[digit]] [coil);
else

return (C [COMBO[digit]] [col I coversum (digit+ 1,col,level));

insert combo (level)
jut level;

jut mtemp;

for (mtemp =0; mtemp < level; mtemp++)(
insertMIS (LINDEX [COM~BOlmtemp]j);

rowsum (row)
int row;

/* this routine calculates the sum of the entries in the Lattice
matrix for a particular row.

/* local data definitions *
int col, sum;

sum = 0;
for (col - 0; col < c; col++){

sum += L [row] [col;

return (sum);

Colsum (col)
mnt col;

/* this routine calculates the sum of the entries in the
Lattice matrix for a particular column. *

/* local data definitions *
mnt row, sum;

sum = 0;

for (row = 0; row < nzr; row++)



sum +~C [row] [Coll;

return (sum);

print.polygon0

/ * dummy routine for now

getline(s, lim) /* get line into s, return length '
char sol;
imt lam,

nt, C, i;

= 0;

while (--tim > 0 && (c==getcharo) 1= EOF && c 1- '0)

s[i++] - C;
s =l , ';

return(i);

* match-.MIS (index)
mnt index;

/* this routine takes an MIS array index and returns the
corresponding visibility matrix index. *

/* local definitions '
mnt vindex;

/* start of routine *
for (vindex - 0; vindex < c; vindex++)

if (((abs (CSETjvindexl.x-MIS~indexl.x) < epsilon)
&& ((abs (CSET[vindexj .y-MIS [indexl.y) < epsilon))

return (vindex);

return (index);

check-Covering (level)
int level;
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/* local declarations a
int ti ,t2,t3,cover,covered;

Puse Visibility matrix V to determine if all triads are
covered by the chosen "minimal" set .
for (tl=O0; t < n-2; tl ++){

for (t2 - t1+1; t2czn; t2++)
if (VjtIjjt2j != 1) continue;/* not a triad */

/* tI sees t2- now find all tQ's *
for (t3=t2+1; t3<n; t3++){

if((V~tlflt3l != 1)
11 (V[t2j[t3j !- 1)) continue;

/* legal triad found - is it covered? *

covered - NULL;
for (cover=-O; cover<m; cover++){

temp - match_MIS (cover);
if ((V[tempj[tlj === 1)
&& (Vftempj[t2J - 1)
&& (V[temp][t31 = 1)){

* covered - NULL+1;
break;

if (covered -- NULL){
Psee if covered by new combo *

for (cover-O; cover<level; cover++){
temp=LINDEXCOMBO [cove.]]
if ((Vjtempj[tIj=-I)
&& (V[temp][t2]=-1)
&& (V[temp]t3J==1))(
covered=NULL+ 1;
break;

if (covered==NULL) return (NULL);

return (NULL+1);
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Appendix C. Glossary of Important Terms.

Degree of complexity: A measurement which indicates the amount of processing needed
for the measured object. In this paper, a polygon's degree of complexity is the cardinal-
ity of its MIS.

Diagonal: A line segment connecting two vertices o! a polygon.

Isovist (of zEP): The set of all points visible from z in P.

Kernel: The locus of points z such that 'Jp C P for all points p in P.

Minimal cover: A set of regions each a subset of P, such that the union of the regions
equals P, and there is no smaller set of regions whose union equals P.

Minimal isovist set: The smallest set of points in P such that the union of their isovists
equals P.

Minimal star-shaped cover: A minimal cover using star-shaped polygonal regions.

MIS: Short for "minimal isovist set".

MSC: Short for "minimal star-shaped cover".

N-gon: A planar figure composed of n straight line segments intersecting at n vertices.

Polygon: A planar region bounded by an n-gon.

Rectilinear polygon: A polygon whose intersecting edges form right angles.

Star-shaped polygon: A polygon whose kernel is non-empty.

Sufficient isovist et: A set of points in P such that the union of the isovists of the
points equals P.

Visible, visibility: Two points z, z in P are visible if the line segment y f"n P ---.
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